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Marginal effects and adjusted predictions are means for providing insights into how important effects really 

are. Adjusted predictions are expected values of a dependent variable computed from the results of a re-

gression, where all independent variables are held at specified values. A marginal effect is the change in the 

predicted value of a dependent variable after changing one independent variable—either a discrete change in 

categorical variables or an instantaneous change in continuous variables—while all other variables are held 

at specified values. Comparing predicted values and marginal effects is a tool for summarizing, interpreting, 

and testing the significance of independent variables. 

While the coefficients of the simplest linear models tend to be easy to understand in substantive terms, the 

models’ underlying assumptions are often not met by the nature of the data. The usual techniques for relaxing 

these assumptions, however, often incur costs in interpretability. For example, when independent variables 

are polynomials like powers or interactions or when the dependent variable is categorical, calculating, and 

comparing predicted values can illuminate the practical importance of each coefficient. 

In addition to helping understand the practical significance of complex models, marginal effects can aid in 

testing the statistical significance of interaction terms in nonlinear models where it is often tempting, but erro-

neous, to rely on the p value of the interaction term in regression outputs (Mize, 2019). Furthermore, marginal 

effects, as they are calculated in terms of the natural (i.e., untransformed) metric of the dependent variable, 

can be used to compare groups in nonlinear models (Long & Mustillo, 2018). 

After providing an overview of marginal effects and adjusted predictions, this entry provides computational 

details and discusses statistical significance, using the example of voter turnout. 

Overview 

Consider, as a simple example, predicting the values of an outcome variable at different ages. Take the fol-

lowing regression equation: 

y = β0 + βageage + ε

Here, age is a continuous variable, and ε is the error term. If age has a linear effect, we would expect each 

additional year to matter the same when someone is 21 as when they are 81. To calculate the marginal effect 

of an additional year is straightforward: Calculate y when age is zero, and then subtract it from y when age 

is one. If all variables are continuous and linear, the marginal effect is the partial derivative of the regression 

function with respect to the independent variable of interest, which would be equivalent to the slope coefficient 
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(Cameron & Trivedi 2010). 

What if, however, the effect of age is nonlinear? 

y = β0 + βageage + β
age2age2 + ε

In the aforementioned equation, the effect of age is allowed to differ when someone is 21 as when they are 

81. This makes calculating and interpreting the effects of the coefficients a little trickier. We cannot know from 

the coefficients alone what the predicted value for a 21-year-old would be but must instead plug “21” into the 

equation and solve it. 

To make matters more complicated, age might interact with class: The effect of age for lower or working-class 

person of a certain age might be different than for middle- or upper-class person of the same age: 

y = β0 + βageage + β
age2age2 + βclassclass + β(class ∗ age)(class ∗ age) + ε

Finally, if we are predicting whether someone voted (y = 1) or did not vote (y = 0) in a presidential election 

(i.e., a discrete choice), the model might be 

Pr(vote = 1) = F(β0 + βageage + β
age2age2 + βclassclass + β(class ∗ age)(class ∗ age))

As the outcome is binary, and thus the model is nonlinear regardless of the independent variables, we would 

likely use logistic regression (and the inverse logit function) or else probit. Here the coefficients are log odds, 

which are difficult to understand intuitively. While authors often exponentiate the coefficients (i.e., convert 

them to “odds ratios” for better interpretation), odds ratios can be misleading because it is tempting, but in-

correct, to treat them as relative risk. In each of these cases, understanding the practical significance of coef-

ficients is difficult, and thus calculating adjusted predictions and marginal effects using statistical software is 

often necessary. 

Example 1: Voter Turnout by Age and Class 

Using the 1972– 2018 General Social Survey from the United States, and whether a respondent said they 

voted in a presidential election as the outcome variable, we first estimate a logistic regression for the model 

(shown as both log odds and odds ratios—that is, the exponentiated log odds—in Table 1). 

The .62 positive coefficient for class (coded 0 = lower/working class, 1 = middle/upper class) indicates that 

those in the upper classes are more likely to vote than those in the lower social classes—but it does not make 
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clear how much more likely they are. The positive .12 coefficient for age has the same limitations. The pres-

ence of squared terms and interactions further muddles the ease of interpretation. 

As we are interested in the more intuitive probability that a respondent would vote (rather than, e.g., the log 

odds of voting), we need to calculate predicted probabilities. We can then easily visualize the predicted proba-

bility of voting, P(voting), by age (Figure 1, left panel). Then, we show the same but disaggregated by whether 

the respondent self-identifies as lower/working class or middle/upper class (Figure 1, right panel). The plot 

shows that the effect of age is nonlinear, and the effect of class is roughly consistent across age—the differ-

ence between the predicted values for lower/working class and those for middle/upper class (right panel) is 

the marginal effect for class at different ages. 

More specifically, the left-hand side of Figure 1 shows that 20-year-olds have 31.7% predicted probability of 

voting. The probability of voting then rises with age, peaking at 68.2% at age 60, and then gradually declines 

after that. The right-hand side of Figure 1 further shows that middle- and upper-class voters are consistently 

10–14 percentage points more likely to vote than their similarly aged lower- and working-class counterparts. 

The predicted probabilities in Figure 1 provide a far clearer picture of the effects of age and social class on 

voting than the logistic regression coefficients did. 

Table 1. Logit results for voting in presidential elections by age and class. 

Log odds Odds ratio 

Age 0.1153 1.1222 

Class 0.6152 1.8501 

Age2 −0.0009 0.9991 

Age × class −0.0017 0.9983 

(Intercept) −3.5604 0.0284 

N = 60,999 
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Figure 1. Predicted probabilities of voter turnout in presidential elections. 

We could also summarize the impact of each predictor variable (age and class), on the outcome variable (vot-

ing), by calculating their respective average marginal effect (AME). Here, the marginal effect of being “middle 

or upper class” as opposed to “lower or working class” is 0.1227. That is, on average, middle- or upper-class 

individuals are 12.27 percentage points more likely to vote than are members of the lower or working class. 

Again, the original coefficients indicated there were class differences in the likelihood of voting, but the AME 

made it much clearer how great those differences were. 

With the categorical variable class, which has only two possible values, the AME is easy to interpret. It is 

simply the difference in the predicted values for the two groups. For continuous variables like age, which can 

potentially take on an infinite number of values, AMEs may be less useful (Cameron & Trivedi, 2010). Other 

methods, such as adjusted predictions and marginal effects at representative values, may be better choices. 

Computational Details 

The way marginal effects and adjusted predicted are computed depends on whether the independent variable 
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is discrete or continuous, and also on how other covariates are held constant. 

Discrete Changes Versus Instantaneous Rate of Change 

As stated previously, a marginal effect is what happens to a dependent variable when one independent vari-

able changes, while the others do not. There are two ways a variable can change. An instantaneous change 

is an infinitely small change in the independent variable, which is often used when the variable of interest is 

continuous. A discrete change (or first difference) is a finite change in the independent variable, usually used 

for binary or categorical predictors but can be used for any kind of variable, for any amount. 

As some consider “marginal” to be synonymous with “instantaneous,” marginal effects obtained using discrete 

change are sometimes referred to as “partial effects,” reserving “marginal effects” for only those predictions 

obtained using instantaneous rate of change. However, to make matters more confusing, as an instantaneous 

change in a continuous variable corresponds to an (infinitely small) portion of the unit of the variable, this has 

also been referred to as “partial change” in contrast to “discrete change” (see e.g., Long 1997). 

In the example provided, if we use the instantaneous rate of change, we are presuming that age is infinitely 

divisible. However, age could also be measured using the discrete change method, presuming it is divided 

into finite units like days, months, years, or decades. More generally, an instantaneous change is a discrete 

change as the amount of discrete change approaches zero. How linear the predicted probability curve is de-

termines how similar the discrete change and the instantaneous change will be. Discrete changes tend to be 

easier to interpret. Nevertheless, the default for most margins packages for both Stata and R statistical soft-

ware is to use instantaneous change for continuous variables and discrete change for categorical variables. 

Holding Covariates Constant 

As mentioned, marginal effects of an independent variable on the dependent variable and predicted values 

are determined by the value of the independent variable (in the literature, this is usually denoted as xk) and 

the values of all other variables held at some specified level (often denoted as x* or a bold x). In other words, 

we are looking at what happens when one variable changes while the others do not. 

In the first panel of Figure 1, the simplicity of the model allows us to visualize predicted probabilities of voting 
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for all values of age. But, class is also in the model, therefore at what value is “class” being held constant? 

This is a problem for nonlinear models, as the value of the marginal effect will depend on the specific values 

of all of the independent variables (Long & Freese, 2006). There are generally three methods to determine 

these values (Cameron & Trivedi, 2010; Williams, 2012). Similar approaches are used for computing different 

types of adjusted predictions. 

Marginal effect at the mean (MEM) is perhaps the most common method of determining these values, or at 

least it was before advances in computing software made other approaches more accessible. This entails 

holding covariates at their mean values (in the case of binary variables like gender, they will be held at their 

sample proportions). Although the MEM is simple to compute and understand, it is sometimes criticized for 

using a “typical” case that does not exist among the observations and perhaps cannot exist (Long, 1997; 

Williams, 2012), for example a person who is 42.3 years old and 55% middle/upper class and 42% male. 

An increasingly popular alternative is the AME. An adjusted prediction and marginal effect are computed using 

the observed values for each case. These values are averaged across cases, giving the average adjusted 

prediction and the average marginal effect. Richard Williams (2012) detailed how the calculations are done 

and argued that AMEs are superior to MEMs because they use all of the information available on the vari-

ables, not just their means. 

Still, like MEM, AME is a summary measure where the average size of the marginal effect may not be close 

to any actual observation’s marginal effect (Long, 2014). Furthermore, AME tends to be more complex to cal-

culate and, depending on the data, MEM is sometimes considered an adequate approximation of AME. 

While promoting the advantages of AMEs and MEMs, Williams (2012) also noted 

The biggest problem with both [AMEs and MEMS] may be that they only produce a single estimate 

of the ME. No matter how “average” is defined, averages can obscure differences in effects across 

cases. In reality, the effect that variables like race have on the probability of success varies with the 

characteristics of the person; for example, racial differences could be much greater for older people 

than for younger. (p. 326) 

To deal with these concerns, Williams (2012) recommended calculating marginal effects at representative val-

ues (MERs), MERs are similar to MEMs, but as the name implies, the analyst manually chooses (usually sub-
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stantively or theoretically interesting) values for each covariate, rather than the mean. Williams (2012) said 

“With MERs, you choose ranges of values for one or more independent variables and then see how the MEs 

differ across that range. MERs can be intuitively meaningful, while showing how the effects of variables vary 

by other characteristics of the individual” (p. 326). Williams (2012) presented a logistic regression where the 

dependent variable, diabetes, is positively affected by age: Older people are more likely to have diabetes than 

are younger people. In this example, he showed that the AME for race was .04; that is, on average, Blacks 

were 4 percentage points more likely to have diabetes than were Whites. However, this average number ob-

scured a great deal of racial variability by age. At age 20, the racial Black/White difference in the likelihood of 

having diabetes was less than 1 percentage point. This is not surprising because, in the 1970s sample used, 

before diabetes in the United States rates started skyrocketing, hardly any 20-year-olds in the study had dia-

betes, regardless of their race. But, the racial gap gradually widened with age, with the gap being nearly nine 

percentage points by age 70. 

Example 2: Voter Turnout by Age, Class, and Gender 

Table 2. Logit results for voting in presidential elections by age, class, gender, and education. 

Log odds Odds ratio 

Age 0.1170 1.1241 

Class 0.6773 1.9685 

Gender 0.2691 1.3088 

Education −0.0196 0.9806 

Age2 −0.0009 0.9991 

Age × class −0.0019 0.9981 
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Again using the 1972–2018 General Social Survey and whether a respondent said they voted in a presidential 

election as the outcome variable, we estimate a more complicated logistic regression using age, class, gen-

der, and education (highest year of school completed) as predictor variables and allowing all variables to vary 

with age, and interacting class and gender (shown as both log odds and odds ratios in Table 2). 

Age × gender −0.0031 0.9969 

Age × education 0.0002 1.0002 

Class × gender −0.0840 0.9194 

(Intercept) −3.6288 0.0265 

N = 60,999 
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Figure 2. Marginal effects using AMEs, MEMs, and MERs. 

Note: 95% confidence intervals. Representative value in the MER is age at 18. 

We then calculate MEMs, AMEs, and MERs for each variable (Figure 2). We see that, even in this more com-

plicated model, with different ways of computing the marginal effects, the upper social classes are still about 

12 percentage points more likely to vote than the lower social classes. We also see that, for these data, the 

difference between MEMs and AMEs for every variable in this model are very small. For the MER, we set age 

to 18 and calculate the average marginal effects for all variables, revealing that the marginal effect of gender 

is small (less than 2 percentage points) but statistically significant for this age-group. 

Next, we plot the predicted probabilities at representative values; specifically, we show the marginal effects of 

class and gender for different values of age (Figure 3). We can see that, for all ages, the marginal effect of 

class is always above 10 percentage points and significantly different from zero, but this is not so for gender. 

The marginal effect of gender is much smaller than the marginal effect for class and is not distinguishable 

from zero from roughly 40–60 years old. 
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Figure 3. Marginal effect of class and gender by age. 

Note: 95% confidence intervals. 

Statistical Significance 

This entry has focused primarily on ways to assess the substantive significance of results; but statistical sig-

nificance is usually assessed too. The following subsections discuss how that is done with marginal effects 

and adjusted predictions, and how group differences and interaction effects can then be tested. 
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Confidence Intervals 

The previous examples and discussion covered adjusted predictions and marginal effects to assess the prac-

tical significance of coefficients in regression models (especially nonlinear models). However, adjusted pre-

dictions can also be used to assess statistical significance of group differences and interaction terms in non-

linear models, the first step of which is to estimate standard errors of predicted values and marginal effects. 

This is fairly easy to see in the visualization of the marginal effect of gender (Figure 3, right panel). Where 

the confidence interval contains zero, the difference in the marginal effect of women compared to men is not 

statistically significant. 

The delta method is the most common means of estimating standard errors and the default method used by 

both the Stata margins package (Pitblado, 2014), and most marginal effects packages in R (Leeper, 2017). 

Roughly, this process entails finding a linear approximation of the more complex nonlinear function of the 

model (Long & Freese, 2006). The variance of this approximation is then used to construct confidence inter-

vals for the predicted values. 

One other method deserves consideration: bootstrapping (Efron & Tibshirani, 1994; Long & Freese, 2006). 

By repeatedly sampling from the data used in the model, we can estimate the standard deviation of the sam-

pling distribution that would occur if we took repeated samples from the population (Long & Freese, 2006). 

While bootstrapping may produce more accurate estimates of variance, the delta method is generally much 

less computationally intensive to calculate and the two are otherwise very similar (Dowd et al., 2014). 

Significance of Group Differences and Interaction Terms 

Once we have estimated standard errors for marginal effects, we can easily test group differences using 

a Wald test (Long & Mustillo, 2018). This entails taking the difference of the marginal effects between two 

groups, divided by the square root of the sum of the variance of each group’s marginal effects minus their 

covariance. For example, following the work of Trenton D. Mize (2019), if we are interested in whether the 

effect of age on the probability of voting differs for men and women: Formally, Δagewomen
 and Δagemen

 are the 

AME of age for women and men, respectively. Similarly, σagewomen

2  and σagewomen

2  are the estimated variance 

of each marginal effect. Therefore, to conduct a Wald test to determine whether the AME of age differs be-
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tween men and women, we would use the following: 

z =

^
Δagewomen

−
^
Δagemen

√^
σagewomen

2
+

^
σagemen

2
+ σagewomen.agemen

2

The same procedure can be used with MEM. However, both AME and MEM are summaries of marginal ef-

fects. As Figure 3 shows, the effect of age for men and women is nonlinear: At some points, the confidence 

interval contains zero. Therefore, the analyst may also use MERs, for example, whether the marginal effects 

for 20-year-old women significantly differ from 20-year-old men (for a comparison of using AMEs and MERs 

to test group differences, see Long & Mustillo, 2018). 

For a variety of reasons, the editors of the American Sociological Review (Mustillo et al., 2018) stated that 

researchers should not “use the coefficient on the interaction term to draw conclusions about the significance 

of statistical interaction in categorical models” (p. 1282; see also Allison, 1999; Mood, 2010; Williams, 2009). 

Techniques such as those described in this entry provide one means of drawing such conclusions. Using the 

same procedure for testing group differences, marginal effects, and adjusted predictions can be used to test 

the statistical significance of interactions in nonlinear models (Mize, 2019). 

Conclusion 

When presenting results from regression analyses, researchers in many fields often focus on the signs and 

statistical significance of their models’ coefficients. While commonly done, this approach is often far less in-

formative than it could be. With nonlinear models like logistic regression, the actual effect of a variable on the 

probability of an event occurring is not easily ascertained from the model coefficients alone. Even in ordinary 

least squares regression, the effects of variables can become much more complicated to understand once 

squared terms and interactions are added to a model. Coefficients alone can also obscure differences across 

groups by indicating that an interaction term is or is not statistically significant, missing the fact that group 

differences may be significant across some values of the independent variables but not significant at others. 

The prudent use of adjusted predictions and marginal effects can help alleviate these limitations. Instead of 

saying, for example, that the effect of social class is .62 in a logistic regression, one can show that this trans-

lates into the more intuitive finding that social classes differ by about 12 percentage points in their likelihood 
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of voting. Instead of saying that, on average, Blacks are about 4 percentage points more likely to experience 

an event than are Whites, one can say that racial differences are very small at young ages, but the racial gap 

greatly widens as people get older. Instead of making a blanket statement that group differences involving 

gender are or are not statistically significant, one can examine whether gender differences are significant at 

some values of age but not others. With advances in statistical software making the computation of adjusted 

predictions and marginal effects far easier than it used to be, these methods may make the practical and sub-

stantive importance of researchers’ work clearer and more forceful. 
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